Markov Chain Monte Carlo Methods for Statistical Inference
نویسنده
چکیده
These notes provide an introduction to Markov chain Monte Carlo methods and their applications to both Bayesian and frequentist statistical inference. Such methods have revolutionized what can be achieved computationally, especially in the Bayesian paradigm. The account begins by discussing ordinary Monte Carlo methods: these have the same goals as the Markov chain versions but can only rarely be implemented. Subsequent sections describe basic Markov chain Monte Carlo, based on the Hastings algorithm and including both the Metropolis method and the Gibbs sampler as special cases, and go on to discuss some more specialized developments, including adaptive slice sampling, exact goodness–of–fit tests, maximum likelihood estimation, the Langevin–Hastings algorithm, auxiliary variables techniques, perfect sampling via coupling from the past, reversible jumps methods for target spaces of varying dimensions, and simulated annealing. Specimen applications are described throughout the notes.
منابع مشابه
Inference about the Burr Type III Distribution under Type-II Hybrid Censored Data
This paper presents the statistical inference on the parameters of the Burr type III distribution, when the data are Type-II hybrid censored. The maximum likelihood estimators are developed for the unknown parameters using the EM algorithm method. We provided the observed Fisher information matrix using the missing information principle which is useful for constructing the asymptotic confidence...
متن کاملMarkov Chain Monte Carlo Maximum Likelihood
Markov chain Monte Carlo (e. g., the Metropolis algorithm and Gibbs sampler) is a general tool for simulation of complex stochastic processes useful in many types of statistical inference. The basics of Markov chain Monte Carlo are reviewed, including choice of algorithms and variance estimation, and some new methods are introduced. The use of Markov chain Monte Carlo for maximum likelihood est...
متن کاملMonte Carlo Techniques for Bayesian Statistical Inference – A comparative review
In this article, we summariseMonte Carlo simulationmethods commonly used in Bayesian statistical computing. We give descriptions for each algorithm and provide R codes for their implementation via a simple 2-dimensional example. We compare the relative merits of these methods qualitatively by considering their general user-friendliness, and numerically in terms of mean squared error and computa...
متن کاملParticle Markov chain Monte Carlo methods
Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as the two main tools to sample from high dimensional probability distributions.Although asymptotic convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the performance of these algorithms is unreliable when the proposal distributions that are used to explore the space are poorly chosen and...
متن کامل